High Energy X-Ray Scattering for Engineering Applications Breakout Session III

Presenter M. Croft (Rutgers)

Session Discussions fell in two categories A.] Grain size-scale up (bottom-up) understanding of mechanical properties, as probed by monochromatic beam ~ 80 keV diffraction. For this group the powder diffraction insertion device would be useful in its present form, with additional facilities.

B.] The greatest part of the discussion focused on the unanimous recognition of the need for materials/engineering diffraction facility for crystal-phase and strain field mapping. This 30-200 keV diffraction facility (dominantly white beam) requires a multi-pole superconducting wiggler insertion device.

A.1 Micromechanical Behavior of Metallic Alloys

- 1. Real answers come from blend of models and tests.
- 2. Metallic crystals deform according to their orientation and neighborhood micromechanically multiaxial.
- 3. Crystals subdivide during deformation.
- 4. Building realistic model specimens requires

3D structural information.

A.2 Strain Pole Figures and Stress Distributions

- Powder diffraction
- Diffractometer
- Fatigue-rated load frame
- Measure strain pole figures
- Calculate stress

Single Grain, Single Spot Experiments - 3DXRD

- Energy > 50 keV, beamsize 10's of grains
- Detector A ~ .7m, rings Single grain stress
- Detector B ~ 8m, single spots grain subdivision

A.4

Grain Reconstruction

- Diffraction-based grain "tomography"
- Non-destructive reconstructive method
- Forward projection -Bob Suter CMU

APS-1IDC

- White beam energy dispersive (EDXRD) + monochromatic x-ray diffraction
- 30-200 keV range, multi-pole superconducting wiggler.
- crystal-phase and strain field mapping

B.1

Diamond JEEP Materials & Processing facility prototype.

Chemical Spatial Distribution (crystal structures vs position map)

THINK OPERATING BATTERIES & FUEL CELLS...

Tomographic Energy-Dispersive Diffraction Imaging (TEDDI)

6×13 mm area in bulk (80 mm. thick) concrete block portlandite z(mm) calcite z(mm)z aggregates binding hydrates z(mm) z (mm) ettringite dolomite x(mm) Paul Barnes Birkbeck College, presentation on Internet x (mm)

Future: Map crystal structures vs. position, time, temperature, voltage/current (batteries-fuel cells)... and their combinations

(Adv. of TEDDI for studies of mat. chem. proc.and env. syst.)

Hall et al, Cemment & Conc. Res. 30,492 (2000)

Aerospace/energy: Turbojet Engine

- prolusion and electric peak power generation

Hostile environment

- high strength (low weight)
- high temperatures
- high part \$
- high cost of failure
- advanced materials

Compressor blades and mounting

Ti-6-4 alloy

Engineered Compressive Stresses

- fatigue life extension (nX)
- foreign object impact (FOI) damage reduction

& Internet

Temperature

Selected examples of <u>compressive stress engineering</u>

Laser Peening (Shock Peening)

Shot Peening

Used extensively in Ti-6-4 engine component processing

Application: X-ray profiling of stresses

- Depth & magnitude of compression
- relaxation under temperature/load
- validation of finite element calculations destructive residual stress measurement techniques

Burnishing (LPB)
Supporting
Fluid Fluid Bearing
Tool

Under study

Workpiece

Executation attracts

Ti-6-4 alloy aerospace specimen Shot peened surfaces

Compare shot peened Ti-6-4

DEEP COMPRESSION!

Understanding/advancing complex turbine blade structures (residual stresses)

TBC compressive stress

- -accumulated damage- relaxation
- -dramatic mean stress drop
- △T currently limited

Ceramic Thermal Bond Coat: thermal gradient TGO α-alumina ox. barrier THERMALLY GROWN OXIDE **Bond Coat** oxidation protection Superalloy load-bearing member

B.10

At issue: Loss of the engine part, engine, or a class A mishap.

Excerpts from Proceedings 2007 Residual Stress Summit & Internet

Application: X-ray profiling of stresses & relaxation in complex structure.

modes of failure...

Profiling of plasma sprayed alumina-ceramic coatings on Ti (life enhancement) NSLS X17B1

Rivet/bolt holes

- stress concentration
- fatigue failure

Split sleeve cold working (expansion)

- compressive stress

Photoelastic coating illustrates surface strain.

Aerospace applications

Split sleeve cold worked results EDXRD NSLS X17B1

 $\epsilon_{\theta\theta}$ - crucial compression dramatic & long ranged ϵ_{rr} - more complicated

Ti-alloy

Example*

(*Representative of x-ray capabilities only not of optimized processing technique.)

Welding applications example

X-ray strain/phase mapping could be used to validate FE assumptions/calculations for crucial dissimilar metal weld studies or nuclear power applications

B.16

Excerpts from Proceedings 2007 Residual Stress Summit & Internet

Test Gears:

- ·Single Tooth Bending
- ·Dynamic Testing

Amenable to in-situ x-ray studies

Excerpts from Proceedings 2007 Residual Stress Summit & Internet

B.17

Some Capabilities/Concerns

Superconducting wiggler 30 – 200 keV Multiple Hutches e.g. 5 - 3 simultaneous white beam or monochromatic hutches (Side scattering monochromatic)

Last hutch (s) beyond confines of present building (e.g. Diamond JEEP materials line with hutch 11m X 7m)

In situ high capacity multi-axial loading frame + In situ high temperature

Magnetic field capacity

New software + software/inter computer interface.

Full integration between motor driving computer control and data collection control.

Real-time (during run, point by point) data processing (currently only possible only after scan)

Data storage of sample positions with spectral data

Naming a chronology of data sets--- storage/retrevial capacities...

Laser scanners – digital image of specimen/component sample (e.g. SSCANSS) for rapid sample change, alignment and mapping.

B.18